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Abstract—Resource management and job scheduling are
the key to high-performance computing (HPC) clusters
for high system utilization, short user wait time, and fair
resource allocation. The effectiveness of job scheduling
policies normally depends on how well they fit the char-
acteristics of clusters. With the growing proportions of
machine learning jobs in HPC clusters, it is mysterious
what the hybrid HPC traces are like, whether traditional
scheduling policies of HPC still work efficiently and how
is the performance if applying scheduling policies from
Machine Learning (ML) datacenters to HPC clusters.
This study unveils the mystery by characterizing and
comparing the similarities and differences between HPC
traces and ML traces. We firstly synthesize hybrid traces
with awareness of the characteristics. We also summarize
scheduling policies from large-scale HPC clusters and ML
datacenters and compare them on the hybrid traces to shed
light on the design of scheduling policies for new-era HPC
clusters.

I. INTRODUCTION

Resource management and job scheduling are critical
in HPC platforms to determine the order of execution
of batch jobs submitted by users. The quality of job
scheduling policies has a large impact on the effective-
ness of jobs, the utilization of computing resources, and
the satisfaction level of users. The jobs in HPC platforms
were traditionally dominated by large scale simulation
programs. Recently, with the rapid development of Ar-
tificial Intelligence (AI) and Machine Learning (ML), a
variety of AI/ML jobs have occupied a considerable part
of batch jobs [5], [6], which leads to a new challenge of
Hybrid Jobs Scheduling.

Recently, various studies of job characterizations have
been done to understand either HPC jobs or ML jobs.
Patel et al. [4] analyzed a decade of HPC jobs to
support several long-standing traditional knowledge and
identify many previously unknown trends and their con-
sequences. Hu et al. [1] investigated the characteristics
of ML jobs in their own datacenter and compared the

findings with a previously similar study, conducted by
Jeon et al. [2], on ML jobs.

Understanding the characteristics of HPC jobs and ML
jobs separately can properly help administrators manage
and operate large clusters where resources for different
types of jobs are dedicated. However, the learning for
each type of jobs can not directly be applied to the
scenario where jobs are hybrid. For example, ML jobs
are known for high cancel rates [2], [1] but HPC jobs are
not. The scheduling policies taking advantage of the high
cancel rate may not thrive in clusters with hybrid jobs.
To derive a sophisticated scheduling policy for hybrid
jobs, investigating the characteristics of hybrid jobs is
crucial. Unfortunately, the lack of online-available traces
of hybrid jobs makes the effect of directly applying
current scheduling policies to them unknowable, and also
hinders the exploration of scheduling policies that are
most suitable for them.

II. BACKGROUND

A. Scheduling Policies

Job scheduling serves as the key part in HPC platforms
and ML datacenters to determine the order of execution
of jobs submitted by users. The quality of batch job
scheduling has a large impact on the effectiveness of
jobs, the utilization of computing resources, and the sat-
isfaction level of users. To study and compare scheduling
policies of the systems under analysis, we need to know
in detail what scheduling policies they used. Table I
displays five scheduling policies and the systems where
the corresponding policies are proposed or used. First
Come First Serve (FCFS) is the simplest but widely-
used scheduling policy. It prioritizes waiting jobs by the
submit time (st) of them, and the less score means the
higher priority. Blue Waters does not publish its exact
scheduling policy. However, it mentioned some high-
level factors, such as ”Larger jobs generally get priority
over smaller jobs.” [3]. As a result, we use Largest Job



TABLE I: List of scheduling policies

Name System Function

FCFS N/A score(t) = st
Largest Blue Waters score(t) = −nt

QSSF Helios score(t) = predicted run timet
WFP3 Intrepid/Mira score(t) = −(wt/rt)3 ∗ nt

UNICEF Intrepid/Mira score(t) = −wt/(log2(nt) ∗ rt)

First (Largest) as an approximation of its scheduling
policy. nt represents the requested nodes of jobt. The
administrators of SenseTime designed a novel scheduling
policy, Quasi-Shortest-Service-First (QSSF) [1], for their
own Helios datacenter, which basically prioritizes jobs
based on the predicted run time. WFP3 and UNICEF
were used for production jobs and development jobs
respectively on Intrepid, where wt, rt represent wait time
and run time.

III. METHODOLOGY

In this study, we generate hybrid job traces from
several online available HPC traces and ML traces.
Specifically, we sample jobs from HPC traces and ML
traces and then mix these jobs together as a single hybrid
trace.

Such a mix is straightforward but also biased since
it highly depends on the selected HPC traces and ML
traces. If these traces are not representative, the mix
of them will only be a corner case with no insights.
Even with the help of the synthetic hybrid trace, several
critical questions are still not easily answered. For ex-
ample, which option is better, to have separate dedicated
resources for different types of jobs, or to share the
common resources? Should ML jobs and HPC jobs share
the same scheduling policy?

Based on the characterization, we have a better under-
standing of each trace and then consciously synthesize
various hybrid job traces by mixing jobs with different
properties from different traces in multiple mixing ratios.
As a result, the synthetic hybrid traces cover a series
of possibilities and will not be too biased toward the
selected traces. To investigate the efficiency of recent
scheduling policies, we apply them to the hybrid job
traces to see the performance.

We summarize our contributions into threefold:
• We perform an analysis on a large-scale HPC trace

and firstly compare the characteristics of HPC jobs
with ML jobs to deeply understand their similarities
and difference, and shed light on the future strategy
of resource management for a combination of these
jobs.

• We propose a way to synthesize hybrid traces (HPC
jobs and ML jobs) with awareness of the properties
of each type of jobs.

TABLE II: Performance of different scheduling policies
on Hybrid traces with various proportions of ML jobs.

Different Proportions of ML Jobs
Scheduling Policies 8:1 6:1 4:1 2:1 1:1

FCFS 94042 75837 63725 40094 44235
Largest 134867 114159 105921 42950 50572
QSSF 5308 4119 5538 1121 284
WFP3 1209 1003 768 336 426

UNICEF 38183 32004 26928 10021 14965

• We conduct evaluations to show the performance of
a series of successful scheduling policies on hybrid
traces which can potentially be used as baselines
for the design of future scheduling policies.

IV. PRELIMINARY RESULTS

In HPC clusters, the ratio of ML jobs tends to be
divergent. To formulate a reasonable guide for future
work, we cover a series of ratios of ML jobs. It is
noticed that we assume for HPC clusters, the number
of HPC jobs should be dominant hence the proportion
of ML jobs is no more than 50% in our settings. Table II
shows the median wait time of each scheduling policy
on hybrid traces with different ratios of ML jobs. We
consider median over mean because there are quite a
few outliers that may wait tens of days which biases the
mean value a lot. The results are consistent for ratios of
HPC jobs and ML jobs from 8:1 to 2:1 where WFP3
has the lowest median wait time. When ML jobs have a
comparable amount with HPC jobs (1:1), QSSF becomes
the best scheduling policy, but WFP3 still outperforms
the other policies with a large margin.
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